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In 1956, Shannon defined the zero-error capacity of a discrete memoryless channel as
the largest rate at which information can be transmitted over the channel with zero error
probability. He exhibited one particularly interesting channel with five inputs and
outputs whose zero error capacity he could not compute. The problem of computing this
capacity remained unsolved until very recently, when Lovasz computed it in an astonish-
ing simple manner. We show that Lovasz’ideas, combined with some of our own, lead to
an extremely powerful and general technique, which we phrase in terms of graph theory,
for studying combinatorial packing problems. In particular, Delsarte’s linear programming
bound for cliques in association schemes appear as a special case of the Lovasz bound,

l. Introduction

Let V'={v;, -, vy} be a finite set with N elements, and
let E be a collection of two-element subsets of V. Then the set
G consisting of the singletons {v,} from ¥ and the elements of
E is called a graph' on V. The elements of V are called the
vertices, and those of E, the edges, of G. Figure 1 depicts a
particularly interesting graph for our purposes:

G = {{0},{(1L{2}, 3}, {41{0,11,{1,2},{2,3},{3.4},{4,0}}

Here vertices are represented by points in the plane, and edges
by lines joining appropriate pairs of vertices. (For future
reference we label this graph Cs.)

Asubset Y = {y,, -,y }of Vis called an independent
set if none of the pairs b, yj}, i #j, are edges of G. The

"More accurately, an undirected graph.

cardinality of the largest possible independent set in G is
denoted by a(G):

a(G) =max {IY|: Y independent set in G} )

For example, a(Cs) = 2, and the set Y = {0, 2}, circled in
Fig. 1, is a maximal independent set.

For any integer n = 2, we now define the n-th direct power
of G, denoted by G™, as follows: the vertex set of G” is the
Cartesian power V7, i.e., the set of all N n-tuplesv=(v,, - -,
v,) from V. The edge set of G” consists of all pairs {v, v'}
from V™ such that {v;, v/} € G for all i. Note that if A is the
incidence matrix of G, i.e., the following N X N matrix whose
rows and columns are indexed by elements of V;

1if v,v'}eG
A, V)=
0 if not
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then the incidence matrix of G” is the n-th direct (Kronecker)
power of A.

The capacity of G, denoted by 8(G), is now defined as
follows:

8(G) = sup a(G™)!/" )

n

This notion? was introduced by Shannon (Ref. 8) in connec-
tion with the problem of finding the zero-error capacity of a
discrete memoryless channel, and he developed techniques
that enabled him to compute the capacities of many, but not
all, graphs.

For example, Shannon showed that if there exists a map-
ping ¢ of V into an independent set of G such that {v, V'1¢G
implies {¢(v), 9(v")} ¢ G, then 6(G) = a(G).

Also, he gave a linear programming upper bound on 6(G),
as follows. Let P be a probability distribution on V,i.e., P(v) =
0, T {P(v):veV}=1.Pis extended to subsets X C V addi-
tively: P(X) = 2 {P(x): x € X}. The subset X is a clique in G if
{x,x'}e G for all x, x" € X. Then Shannon proved that

8(G) <!
where

A =min max {P(X): X a clique} 3)
P

the minimijzation in Eq. (3) being taken over all possible
probability assignments.

These two results enabled Shannon to calculate the capa-
city of all graphs with five or fewer vertices, with the single
exception of the graph Cs of Figure 1. For Cy his results
yielded only

V5 <6(C)<5/2 (footnote 3) 4)

2Actually, Shannon’s definition of capacity is the logarithm of our
definition.

3The lower bound in Eq. (4) results from the fact that a(C%) =5, a fact
also established by Shannon.
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Then, twenty-one years later, Lovasz (Ref. 5) established
that 8(Cs) < \/3; this, combined with the lower bound in Eq.
(4), shows that 9(C5)=\/5-. Let us briefly sketch Lovasz’
technique for finding upper bounds on 8(G).

Lovasz defines an orthonormal representation of G as a
realization of G in which the vertex set V'is a set of vectors in
a Buclidean vector space, with the property that {v, v'} e G iff

’
vev #0.

If G has such an orthonormal representation, and if b is any
unit vector, Lovasz’ bound is as follows:

6(G) < (min {(v-b)2:ve V! ®)

Lovasz applied Eq. (5) to the graph Cs by considering an
“umbrella” with five ribs {v,, v,, - -+, V5 } of unit length. If
the umbrella is opened to the point where the angle between
alternate ribs is 90 deg, then {v,, - -, Vs }is an orthonormal
representation of G in Euclidean 3-space. If the handle b is
also a unit vector, then one easily shows that b » v, = 571/4for
all i, and hence by Eq. (5), 8(Cs) <+/5.

Lovasz also derived many other consequences of Eq. (5)
that we cannot summarize here. However, let us at least
remark that several of the examples in Section IV also appear
in Lovasz’ paper, and were clearly derived by him earlier. (We
will give references to Theorems in Lovasz’ paper at the
appropriate places in Section IV.)

The present paper arose from an attempt to put Lovasz’
results into a general setting. We believe we have succeeded in
doing this, but in our development orthonormal representa-
tions have entirely disappeared. Nevertheless, the bounds we
shall derive (at least the bounds on 6(G)) could all be derived
from orthogonality graphs, and so we call these bounds Lovasz
bounds. (Appendix A contains a proof of the equivalence of
our methods and Lovasz’.)

In Section II, we give out derivation of the Lovasz bounds.
It will be seen that computing these bounds for a fixed graph
G amounts to solving a certain nonlinear programming prob-
lem.

In Section III, we demonstrate that if the graph G is highly
symmetric ( in a sense made precise there), this nonlinear
programming problem becomes a linear programming ~ “'~m.

In Section IV, we apply our general results to several
examples. First we give a very simple bound on 6(G), which
applies to any regular graph. Next, we compute the Lovasz
bound for two infinite families of graphs, the cyclic graphs Cy,



and the-quadratic residue graphs Qp, which are two different
generalizations of the graph Cy. We do not succeed in comput-
ing the capacity of any of the graphs Cy, with odd N> 7, but,
for all prime p = I(mod 4), we show that B(Qp) =+/p. Then
we consider three special graphs: the Peterson graph, the
icosahedron graph, and the dodecahedron graph. Also we
consider an especially interesting regular graph on 7 vertices.

As out final example in Section IV, we show that Delsarte’s
(Ref. 3) linear programming bound for cliques in association
schemes follows as a special case of our results.

Il. The Lovasz Upper Bounds

In this section and the next, G will denote a fixed graph.
We will continually be dealing with vectors and matrices whose
components are indexed by the vertex set V of G. If x is such
a vector, and v € V| the v-th component of x will be denoted
by x(v); if A is such a matrix, its (», v")-th component will be
denoted by A(»,v").

We will also be working with the quadratic forms associated
with such vectors and matrices. If x is a (column) vector, and
A a symmetric matrix, the quadratic form xTAx is defined by

xTAx =

Z x(») x(v") A@, V) @)

(v,v')e 2

We will always view xTAx as a function of the components of
the vector x.

The following will no doubt appear quite trivial, and yet it
is our main result. The remainder of the paper will be devoted
merely to exploring its consequences.

Theorem 1:

Let A be a symmetric real matrix such that
Ap,Y)=1ifv =y
<0if {v,v'}¢G

Thenifu=(1, 1, -, 1) denotes the all-ones vector,

inf {xTAx: x - u=1}<a(G)™! @)

Proof:

Let Y € V be a maximal independent set in G, i.e., |Y| =
o(G). Define the vector y by

yO)=aG) tifveY

=0 if not

Then clearly y * u = 1, and by Eq. (6), yTAy < a(G)~!. This
proves Eq. (7).

Let us denote by A(A) the value of the left side of Eq. (7)
MA)=inf (xTAx:x-u=1} (8)

Theorem 1 gives an upper bound on a(G), viz., (G) <
MA)™! provided A(A)>0. Clearly in order to apply this
bound we will need to know more about the function A(A).
For future reference we now list some of its more important
properties. Throughout we assume A is real and symmetric.
(Proofs of these facts may be found in Appendix B.)

First of all, unless A is positive semi-definite (hereafter
abbreviated p.s.d.), ie., unless xTAx >0 for all x, A(A) is
negative:

MA) = 0iff Ais p.s.d. ©)

-Assuming that A is p.s.d., let £, -, £y be a complete
orthonormal set of eigenvectors for A, i.e., § k= Si’j, and
AEI- =N §;. Since A is p.s.d. the eigenvalues A; are all nonnega-
tive. Let u=u; & +---+ uy £y be the expansion of u with

respect to this basis.
Then

MA)=0ifu; #0, ;=0 for some j (10)

MA)Y=(Z u].2 />\].)_1 otherwise 48]

where the summation in Eq. (11) is extended only over sub-
scripts / with ), > 0. (Alternatively Eq. (11) includes Eq. (10)
as a special case if we extend the summation over all j and
make the conventions that ¥2/0 =Qifu =0, = if 4 # 0, and
ool =0,)
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If u is itself an eigenvector of A with eigenvalue o, the
computation of A(A) is much simpler:

MA) = ¢/Nif Au=ou, and A is p.s.d. (12)

There is a useful dual formulation of the definition (8) for
p-s.d. matrices:

MA)=max A: A—AJisps.d.} (13)

where in Eq. (13) J denotes the matrix of all ones.

Our last auxiliary result about M(A) is that it is multiplica-
tive for p.s.d. matrices:

MA X B) = \(A) \(B) if A and B are p.s.d. (14)

where A X B denotes the direct product of A and B.

According to Eq. (9) Theorem 1 will only give nontrivial
information about &(G) if A is p.s.d. This leads us to define
the following two sets of matrices.

Definition 1:

The set £(G) is defined as the set of all matrices
A = (A(vy")) indexed by the vertices of G, satisfying

A is p.s.d. (15)
A(v,v)=1forallveV (16)
AW, V) <0if ,vV31¢G a7

Definition 2:
Similarly €4(G) is the set of matrices satisfying Egs. (15)

and (16), with the condition (18) replaced with the stronger
condition

A,V )=0if py'1¢G (18)

The significance of the class §(G) is obvious, in view of
Theorem 1 and Eg. (9).

Theorem 2:
a(G) <MA)Y ! for all A € UG)
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The significance of £2,(G) is given in the next theorem,
which is essentially equivalent to the Lovasz bound Eq. (5).
(For a proof of this equivalence, see Appendix A.)

Theorem 3:

6(G) <MA) ! forall A e Qy(G)
Proof:

The key to the proof is the fact that if A € §4(G), then the
the n-th direct power Af7] = A X A X - -+ X A (n factors) will
belong to £4(G").

To see this, observe first that Al#) is p.s.d., being a direct
product of p.s.d. matrices. Next, if v=(v,, *--,v,) and vV =
(', - ,v,) are vertices in G", then by definition of the
direct product,

Alrl (v, v) = n A, v)) (19)
=1

It follows immediately that A7) (v, v) =1 for all v e G, since
each of the factors on the right side of Eq. (19) will then be 1.
If {v, v'} ¢ G™, there must exist at least one index j such that
v, v} ¢ G. Since A € Q,(G), it follows from Eq. (18) that
A(v;,v;) = 0 and hence that Al7] (v, v') = 0 as well. Hence
Aln] satisfies- Egs. (16), (17), and (18), and thus lies in
G™).

Since Q4(G") C Q (G"), we may apply Theorem 2 to the
matrix A7, and conclude that a(G") < A(AL71)~1. But from
Eq. (14), MAl7]) = A(A)". Hence a(G™) < NMA)~" for all #,
and so from the definition Eq. (2) of 8(G), we get 8(G) <
MAY L

Motivated by Theorems 2 and 3, we now define the Lovasz
bounds oy (G) and 6 (G):

aL(G) =min MA)! : A e Q(G)} (20)

6,(G)=min (NMAY' : A e Q ()} (21)

We have shown in Theorems 2 and 3 that o(G) < &, (G),
0(G) <6 L(G). Unfortunately, we know of no efficient algo-
rithm for computing aL(G) and 0 L(G) for an arbitrary graph.
However, we will now show that one can use the symmetries
of G to simplify the calculations somewhat. In Section III we



will extend these ideas and show that if G is highly symmetric,
the bounds «;(G) and 6,(G) can be computed via linear
programming.

A symmetry of the graph G is a permutation of the vertex
set V' that leaves the edge set E invariant. Thus if 7 is a
permutation of V| it is a symmetry of G if and only if {n(»),
m(»")} e E whenever {»,v'} e E. Notice that a symmetry of G is
also a symmetry of the complementary graph G', which has
vertex set ¥ and edge set £, the set of pairs not in E.

Let P be the group of symmetries of G,andlet £, - - , E|
be the orbits of £ under the action of P. Similarly let £,
--+, E) be the orbits of E’. We shall call two edges lying in

the same orbit equivalent edges.

Now suppose that A € Q (G) or £,(G). Then it is easy to
see that the matrix A defined by

%Z A(r ), () 22)

A, V) =
l l meP

also lies in the same set. Moreover, the matrix A has the
property that if {v;, v{} and {v,, v,} are equivalent edges,
then A(v,, ¥}) = A(v,, v,). Additionally, we can show that
MA) = MA). For if we denote by 7(A) the matrix with entries
A(n(v), n(+")), then for any value of A,

A-N =ﬁ}; (n(A) - M)

1
=7p] 20 A= \D)
nweP

If we let X = MA) then by Eq. (13) A- A is p.s.d. and
hence so is_each 7(A - AJ). Thus A - A is p.s.d. and so by
Eq. (13) MA) = MA).

Let us denote by Bj, j=1,2,---,s the edge incidence

matrices for the edge orbits E;:
Bj(v, vVYy=1if v, v'}e E;
= 0 if not

Similarly we define the matrices By, k= 1,2, - - -, ¢ as the edge
incidence matrices for the edge orbits E'k Then, according to

the preceding discussion, the matrix A can be expressed as a
linear combination of these matrices, together with the N X N
identity matrix I:

s t
K=1+) u; B+ i B (23)
i=1 k=1

We have thus shown that starting with any matrix A in
(G) (resp. Q4(G)), we can construct a matrix A of the form
Eq. (23) lying in the same class such that A(A) > A(A). What
this means is that in the computation of the bounds «; (G) and
6,.(G), we can safely restrict ourselves to matrices of the form
of Eq. (23). More formally, we define

Q(G) = p.s.d. matrices of the form of Eq. (23)

with uy <O fork=1,2,---,¢
£4(G) = p.s.d. matrices of the form of Eq. (23)
with g, =0 fork=1,2,---,¢

We have then the following computationally simpler definition
of the Lovasz bounds:

a, (G) =min (MA)™' : A € QG)}

6,(G)=min NAY" : AeQ (G)}

Illl. A Linear Programming Bound for o (G)
and 6 (G)

In this section we will show that if the graph G is suf-
ficiently symmetric, the computation of the bounds «; (G)
and 6, (G) can be greatly simplified.

The degree of symmetry we require is that the incidence
matrices {Bj}, {B;{} in Eq.(23) commute with each other.
That this is in fact a statement about the symmetry group of G
can be seen as follows.
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Suppose P is the symmetry group of G. With each 7 ¢ P we
associate the corresponding permutation matrix 7*:

*(v,v)=1if () =v'
= 0if not

Naturally the edge orbits {E].}, {E 1::} are left invariant by the
symmetries 7 € P; in terms of the corresponding incidence
matrices, this can be expressed as

1r*B].=B].7r*, allj=1,2,---,s,meP (24)

n*B,;=B,'c1r*,allk=],2,~--,t,7reP

Now let P* denote the group of all permutation matrices
corresponding to the permutations in P, and let Z(P*) be the
centralizer ring of P*, i.e., the set of all matrices that commute
with all #* € P*. According to Eq. (24), the matrices {B].}, {B/.'}
all belong to Z(P*).

If the ring Z(P*) were known to be commutative, then it
would follow immediately that the matrices B, ,B}; commute
with each other. Fortunately, this frequently turns out to be
the case. Indeed it can be shown (Ref. 10, Chapter 5) that if P
is transitive, then Z(P*) is commutative if and only if the
complex representation of P afforded by the matrix group P*
decomposes into a sum of inequivalent irreducible representa-
tions. In particular, if P contains a transitive abelian subgroup,
or if for any pair (v, v") of distinct vertices there is an element
of P that exchanges v and »', this condition will be satisfied.

Motivated by the preceding discussion, we now place our
results in the following general setting.

Let V be a finite set containing N elements, and let {El,
E,, -, En} be a partition of the collection £ of all two-
element subsets of V. Foreachj=1,2, -+, nlet A]. be the
incidence matrix for EJ.:

A].(V, v =1if {», v'}eE].
=0 if not

Let A, denote the N X N identity matrix. Assume that the
matrices {A]. :j=0,1, -, n} commute with each other. In
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summary, the assumptions are that the Ajs are (0, 1) matrices
satisfying

n
A0=I,EA].=J (25)

j=0
Each A]. is symmetric (26)
AA; = AyA; foralj, k=0,1,---,n 27

If Cis a fixed subset of {1, 2,---,n}let G be the graph
with vertex set V and edge set

E.=() E, (28)

jeC

Our goal is to give “linear programming” upper bounds on
a(G) and 6(G) (Theorems 4 and 5, below). To state these
results, however, we need some preliminary discussion.

Notice that because of Egs. (25) and (27), each matrix A,
commutes with J, the all ones matrix, and hence the n +
matrices J, Ag, -, A, all commute with each other. Since
these matrices are moreover symmetric, and hence diagonal-
izable, it follows from a known theorem of linear algebra (see
Ref. 4, Chapter 6, Theorem 4), that there exists a set
{£,, }Z - of linearly independent simultaneous eigenvectors
for these n + 2 matrices.

In particular the §_’s are eigenvectors for J:

¥ =\ E ,m=12-" N (29)

{A,,} being the set of eigenvalues for J. But J has only the
eigenvalues {0, NV}, and a simple calculation shows that if J
£=NE, then & must be a scalar multiple of u, the all ones
vector. Thus we may assume that £, =u.

Now for each j, /n, define the eigenvalues N by

Aky =Nk, 7201, ,n (30)

jem

m=1,2,-",N



We come now to our “linear programming” bounds for
oG) and 6(G).

Theorem 4:
Let uy, iy, - - -, 4, be real numbers such that
u].<0 ifj¢C (31)
and
1+Z W\, 20, m=1,2,-- N (32)
Then
n,
a(G )<N< Zu]. >\m>
j=1
Theorem 5:
Let u , -+, u, satisfy Eq.(32), and also
u].=0ifj¢C (33)
Then
0(G) < <N/(1 +Z TR )
Pre ofs:

For the given constants {uj}, define

n
A=I+2u].A].
j=1

Clearly the vectors {zm }are eigenvectors for A, since

n
=£m +Zuj Ajsm
j=1

m
- (1 +E #J)\i,m> Em
j=1

Furthermore, the hypothesis Eq. (32) ensures that the eigen-
values {1+ 2 My >\ o} of A are nonegative, and hence that A is
p.s.d. The condltxons (31) and (33) now imply that the matrix
A belongs to Q (G) or 4(G ). Thus by Theorems 2 and 3, we
get (G o) SMA)Y L, 0(Go) <AA)L.

To compute A(A) observe that §; = u is an eigenvector for
A, with corresponding eigenvalue

n
T4,
=1

and so by Eq. (12), M(A)=(1+Z K; Aj 1)/N. Theorems 4 and
5 now follow.

To get the best possible bounds of the kind given in
Theorems 4 and 5, we are essentially required to maximize the
linear function

n
E“i N1
1

subject to the linear constraints (31) or (33), and (32). This is
a linear programming problem (once the eigenvectors and
eigenvalues of the matrices A; are known); and hence we have
succeeded in showing that the Lovasz bounds a;(G)and 6 (G)
can be computed via linear programming, provided the inci-
dence matrices B;, B, of the edge orbits E;, E}, commute.

IV. Some Applications

In this section we will describe a few of the many possible
applications of the preceding results. In particular we will
obtain Lovasz’ original result on the capacity of (., and
Delsarte’s linear programming bound for cliques in association
schemes.
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A. Example 1. Regular Graphs

A graph G is said to be regular if the number of edges
containing a given vertex v is a constant r, independent of »,
called the valence of G.

A consequence of the regularity of G is that the incidence
matrix B corresponding to the edge set E commutes with J:
JB=BJ. Obviously B also commutes with the identity
matrix I, and hence also with B'=1J - I- B, which is the edge
incidence matrix of the complementary graph. We are thusin a
position to apply Theorem 5. Omitting the straightforward
details, the result is

N
L+r/x_. |

min

0(G) < (34)

where X is the smallest eigenvalue of B (which is necessarily
negative, unless £ is empty.)

Furthermore, if in addition the group of symmetries of G
permutes the edges transitively, it follows from our results that
0,(G) is equal to the right side of Eq. (34), i.e., Eq. (34) is the
best possible bound of this type. (The bound Eq.(34) is
equivalent to Lovasz’ Theorem 9.)

B. Example 2. The Graphs Cy

Denote by C,, the cyclic graph on MV vertices, i.e, V' = {0,
1, -, N-1LE={{i+1}:i=0,1,---,N- 1}, with
indices taken mod. N. These graphs are all regular, and indeed
the cyclic group of order N permutes the edges transitively,
so we may compute 6, (CN) by the formula (34).

To find the eigenvalues of the incidence matrix B in this
case, observe that the vectors x(¢) = (1, ¢, - - -, £¥V~1), where {
is any complex N-th root of unity, form an independent set of
eigenvectors for B, and indeed

Bx({) = (C + ¢ Hx(©)

Hence the eigenvalues of B are {(¢ + ¢ 1)} = {2 cos (27
k/NY : k=0, 1,---,LN/2_1}. The least member of this set is
clearly -2 if N is even, and 2 cos (7 -7/N) = -2 cos (w/N) if N
is odd and = 3. Thus by Eq. (34).

0(Cy) <N/2, N even

<N/(1+(cosm/N)" 1), Nodd,=>3 (35)
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For NV even, or N = 3, this bound is sharp; but these results are
quite elementary and were already known to Shannon.

For odd N > 5, however, the bounds are nontrivial. (They
appear as Coroflary 5 in Lovasz.) With N = 5, for example, we
have 6(C,) < /5.

For odd &V = 7, the upper and lower bounds on 6(Cy) do
not agree. Here is a table of the upper bound (35) vs the best
known lower bounds (Ref. 1) for odd 7 <N < 19:

73/%=3.21410<6(C,) <3.31767

811/ = 432675 <6(C,) <4.36009

148'/3 = 5.28957 < 6(C, ) < 5.38630

247113 = 6.27431 <6(C, ;) <6.40417

3801/3 = 7.24316 <9(C15) <741715

4913'/* = 837214 <6(C, ,) < 8.42701

7666114 =9.35712 <0(C, 5) <9.43477

C. Example 3. The Quadratic Residue Graphs

Letp=1 (mod 4) be a prime. The graph Q,, has vertex set
V=1{0,1, -, p - 1}, and edge set £ = {{, V}v—v1sa
quadratic residue (q.r.) mod p}. (Note that Q is isomorphic to
the pentagonal graph C;.) Q is regular with valence (- 1)2.
The edge-incidence rnatrlx is g1ven by

Bp(v -v)=1ifv-v'isaq.r. (modp)

0 if not

One easily verifies that the p vectors x(§) = (1, &, - -, 7 1),
where § is any complex p-th root of unity, are eigenvectors for
B_, and that the eigenvalue associated with x(¢)is £ {&%:aisa
q.r.}. It is well known (see Ref. 9, Section 11, for example)
that these sums assume only the three distinct values (p - 1)/2,
(-1 £+/p)/2. Hence the least eigenvalue of B, is(-1- V)2,
and Eq. (34) yields 6(Q,) < V/p. On the other hand, if b is a
fixed quadratic nonre51due (mod p), the p ordered palrs o,
bv), v € V form an independent set in Q2 and hence a(Q )=
p. These two inequalities establish the fact that B(Q )= \/[7,
for all p = 1 (mod 4). Because of this result, it is clear that the
graphs Q form a more satisfactory generalization of the
pentagon of Fig. 1 than the graphs C,,. (These graphs do not



appear in Lovasz’ paper. But he does show in Theorem 12 that
if G is self-complementary, and if the symmetry group of G is
transitive on the vertics, then 6(G)= +/IVI. This example is
thus an explicit case of Lovasz’ Theorem 12.)

D. Example 4. Some Miscellaneous
Edge-Transitive Graphs

Here we will apply the bound (34) to three particularly
interesting graphs. In each case there is only one equivalence
class of edges, so that the bounds obtained are all equal to
GL(G). In each case 6, (G) is strictly less than any bound that
could be obtained by Shannon’s techniques.

The Peterson Graph (Fig. 2) is a regular graph with N = 10,
r=3. The minimum eigenvalue here turns out to be -2, so
(34) yields 6(G) < 4. On the other hand o(G) = 4 (note the
four circled vertices in Fig. 2), and so 8(G) = 4. (This result is a
special case of Lovasz’ Theorem 13.)

The Icosahedron Graph (Fig. 3) has N=12, r=5; its
vertices and edges are formed from those of the regular
icosahedron. Here the minimum eigenvalue is -+/5, and so
from (34), 0(G) < 3(+/5 - 1)= 3.7082. On the other hand
a(G) = 3, so we have 3 <6(G) <3.7082.

The Dodecahedron Graph (Fig. 4) is the graph of the
regular dodecahedron, with &V = 20, r = 3. Here Amin = _\/§
also; hence (34) gives 0(G) < 15V/5 - 25 = 8.5410. On the
other hand, o(G) = 8, as shown. Thus 8 < 6(G) < 8.5410.

E. Example 5. A Special Graph on 7 Vertices

Consider the graph depicted in Fig. 5. This graph is regular
with N =7, r =4, and minimum eigenvalue = 4 cos 67/7 cos
2n/7 = -2.2470, and hence by (34), 6(G) < 2.5178. However,
under the action of the symmetries of G, there are two
equivalence classes of edges: those of type {i,7 + 1}, and those
of type {i, i + 2}, modulo 7. In this case the bound of (34) is
strictly larger than the Lovasz bound BL(G); in order to
compute 6, (G), we must apply Theorem 5 directly.

Thus let A, denote the 7 X 7 identity matrix: A,, the
incidence matrix for edges of type {i,i + 1}; A,, for edges of
type {i, i+ 2};and A;, for edges of type {7, i +3} (which are
not edges of G.)

One easily verifies that the matrices {Ag, A;, Ay, AL
satisfy conditions (25) through (27). If C={1,2 } the graph Geo
is the graph of Fig. 5. Also, the 7 vectors of the form x({) =

(1,¢,---,¢%), where { is a complex 7-th root of unity, form a
set of common eigenvectors for the A’s:

Ao X(©) =x(5)
Ay x@© =+ xE)
A, x(O=E*+2)x()

Ay x® =+ ()

Thus according to Theorem S5, if u, and u, satisfy
LHu (§+81) +u, (§2 +§72) >0 for all 7-th roots of unity
¢, then 6(G) < 7/(1 +2u; + 2u,). To get the best possible
such bound we must maximize the function y, + i, subject to
the above set of inequalities. This is easily done by hand*, and
we get the largest possible value with w, = 0.8020, u, =
0.3569. The resulting bound is 6(G) < 2.1098. (This graph is
the complement of the cyclic graph C,; we denote this by
writing G = C.If. Lovasz’ Theorem 8 asserts that if G is any
graph with a vertex-transitive symmetry group, then 6, (G)
0,(G') = N. It thus follows from Example 2 that §,(Cy,)= 1
+ (cos m/N)~1 for odd N. We have included this alternate
derivation only to illustrate a nontrivial example of our linear
programming approach.)

F. Example 6. Delsarte’s Linear
Programming Bounds

Delsarte (Ref. 3) obtained linear programming bounds for
cliques in association schemes. Here we sketch a demonstra-
tion that these bounds are subsumed under our Theorem 4.
(Recently Schrijver, (Ref. 7), has obtained similar results.)

Let V be a finite set, and let R= {Ry,R,, - -, R, }bea
family of n + 1 subsets of the Cartesian square V2. The R; are
relations on V and can be described by their incidence
matrices

A, V) =1if (v,1") eR;

=0if not

4There are really only three inequalities to consider, viz. those with ¢ =
exp (2mik/7), k=1, 2, 3.
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The pair (V, R) is called a (symmetric) association scheme
if the following conditions are satisfied:

(1) R is a partition of V2, and R, is the diagonal, i.e., Ry =
{w,v) :veV}].

(2) The relations {Rj} are symmetric, ie., (v, V') € R;
implies (v', v) € R;.

(3) There exist numbers p(.k_)= p(,k.) such that for all i,j =
Bj i

0’1’...’1,

n
- (%)
AA;= 2 P A,
k=0
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If M is a subset of {0, 1,- -+, n} with O € M, a nonempty
subset Y C V is called an M-clique with respect to R if it
satisfies

R].ﬂY2=¢fora11j¢M

Delsarte (Ref. 3) gives an upper bound on the number of
points in an M-clique, which is the value of a certain linear
program.

But we can equally apply our Theorem 4 to the same
problem, for the matrices {A } of the association scheme
certainly satisfy conditions (25) through (27) (note that since
pg";.)= p](ki), condition (3) is considerably stronger than (27).) If
we let € = {j:j¢M }, then an M-clique as defined above is an
independent set in G, and so the upper bound of Theorem 4
is an upper bound on the cardinality of any M-clique in G.
One can in fact show that this is the same bound as Delsarte’s.
Hence Theorem 4 is more general than Delsarte’s bound, since
it applies to many cases that are not association schemes.



Appendix A

Equivalence of Theorem 3 with Lovasz’ Bound

Given an orthonormal representation of the graph G, define
the matrix A by

AWV, V)=v-v

Clearly A € Q4(G). If b is a unit vector and if X\ = min {(v -
b)? :v €V}, then A - M is p.s.d. This is because we can write
A - A =B + C, where the matrices B and C are defined by

B(v,v)=(v- (v-b)b) - (v' - (v' - b)b)

Cv,v)=(v-b)(v - b)- A

B is p.s.d., since it is the matrix of inner products of a set of
vectors. C is also p.s.d., since if {x(v): v e V}is any set of real
numbers,

xTCx = (T x()(v + b))% - M(Z x(v))?
>0

since (v + b) >+/X for all v. Thus A - AJ, being the sum of two
p.s.d. matrices, is also p.s.d.

Since Aef2,(G) and A - AJ is p.s.d., it now follows from
(13) that N(A) > A and hence from Theorem 3 that 6(G) <
A™1 = (min {(v *+ b)? : v e V})~!. Thus Theorem 3 implies the
Lovasz bound (1.5).

Conversely, if A e Q4 (G), let X = M(A). Then A~ A is
p.s.d., and from a known theorem (Ref. 2), Chapter 9), there

exists a matrix B such that BTB= A - AJ. Letting
{w(v) : v € V} denote the column vectors of B, we have

w(v) « w(v') = A(v,v") - A
=1-Aify=y

=-\if {»,v'}¢G.

Now, let t be a vector orthogonal to all the w(v)’s with [t|2 = A
(increase the dimension of the underlying space, if necessary),
and define

x(v)=w) +1t

The x(v)’s are unit vectors, since

x(v) - x(v') = A(v, v")

The orthogonality graph defined by the x’s is thus a subgraph
(same vertex set, a subset of edges) G' of G.

Furthermore, if we define the unit vector b:

we have x(v) « b = |t| =+/X for all v € V. Hence by Lovasz’
bond (5) 6(G") < A~1 = NA)~!. But clearly 6(G) < 6(G"), and
s0 Lovasz’ result implies our Theorem 3.
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Appendix B

Proof of Assertions (9) through (14)

Recall that A is a real symmetric VX N matrix, and that

MA) =inf (xTAx:x-u=1} (B-1)

where u =(1, 1, - - -, 1) is the all ones vector. According to the
Principal Axis Theorem, (Ref. 2), (Chapters 9 and 10), there
exists a set {&,,- -, &y} of N orthogonal eigenvectors of A:

£ £ =1ifi=j (B-2)
i ]

=0ifi#j
AEj:)\js,, =1’2’...’N (B-3)

Thus, if x =x, & + - +xy  Eyandy =y, & +- - +yy &y,
we have:

N
Xy =Z X; ¥ (B-4)
i=1
N
xTAy =Z Xy (B-5)
=1

If one of the eigenvalues A; is negative, we can construct a
vector x with x * u=1 and xTAx <0, as follows. Let v=y,
g, -t vy Ey be afixed vector withv - u=1, and define
for any real §

x:
ﬁu].+l

(B-6)

where u = u, & +---+uy &y is the expansion of u. Clearly
x *u =1, and from (B-5) we compute

N
Thy = 1 2
x Ax = {>\,~52+2B7\j1}]—+2 ?\I.v].}
i=1

(B u; + 1)?
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Clearly this will be negative if § is large enough, since the
expression in brackets is then dominated by the term ~|A/| 8.
This proves (9).

Thus we assume A is p.s.d., i.e., that the eigenvalues {)\I.}
are all nonnegative. If for some index j we have A; =0 but
u; #0, and if we setx=u171 £ thenx -u=1,xTAx=0. This
proves (10).

On the other hand if u; =0 whenever A; =0, we get by
Schwarz’ inequality

(Zx u,.)2 <@\ x]?) ) x;‘ u?) (B-7)

where the summation is extended only over indices for which
A, >0. Since by (B-4) and (B-5) Zx;u;=x - u,and I\ x} =
xTAx, (B-7) immediately implies that if x - u=1, then
xTAx > (22! 14].2)‘1 =\. On the other hand, by choosing
X, = U, ?\i_l §\ for all i, we get x * u=1 and xTAx = \. This
proves (11).

If u is itself an eigenvector for A, with eigenvalue ¢, then in
the expansion u = u, 21 teetuy EN, u; must be zero unless
A, = 0. Hence NA) = (07! Eul?)‘l = ¢/N, since Eul?2 =
u - u=N. This proves (12).

To prove (13), observe that

xT(A - M)x = xTAx - \(x *+ u)?

_ 2 2 .
=SINx - MZx; u) (B-8)

Comparing this to (B-7), we see that this expression will be
nonnegative for all x if and only if A < (ZN,7! u}) ! ied<
A(A). This proves (13).

Finally we turn to (14). Suppose then that§,, -, &, are
principal axes for the matrix A, with corresponding eigen-
values {?\I.}, and that n,, - - -, m,, are principal axes for B, with
eigenvalues {u, }. Suppose further that u() = (g, +... +
u(If,)SN, uB) = u(lB) Nyt “(151) nyy are the expansions of
all ones vectors, with respect to these two bases.



1t follows from known results (see Ref. 6, Section VII) that ~ Thus, according to (11),
the MN vectors §; X m, are principal axes for the matrix
AX B, with associated eigenvalues A; u,. Furthermore, the

-1
expansion of the MN — dimensional all-ones vector with A X B) = '\ -1{.(4),(B)] 2
respect to the basis {¢; X n,} is clearly ( ) ]Z; ( j M) [ Ui J

= MA) M(B),
u= Z u]gA) uch) (5]_ X "’k)
ik establishing (14).
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Fig. 1. The graph Cg; « (C5) = 2
(this is also the graph Qg of
Example 3 in Section V)

Fig. 2. The Peterson Graph

Fig. 3. The Icosahedron Graph

[

Fig. 4. The Dodecahedron Graph

Fig. 5. A regular graph on seven
vertices



